When $\frac{n+1}{1+\left|\frac{a}{h}\right|}$ is an integer (say m), then Case - I

(i)
$$T_{r+1} > T_r$$
 when $r < m$ $(r = 1, 2, 3, ..., m - 1)$

(ii)
$$T_{r+1} = T_r$$
 when

Conclusion:

When $\frac{n+1}{1+\left|\frac{a}{h}\right|}$ is an integer, say m, then T_m and T_{m+1} will be numerically greatest terms (both terms are

Case - II

When $\frac{n+1}{1+\left|\frac{a}{b_n}\right|}$ is not an integer (Let its integral part be m), then

(i)
$$T_{r+1} > T_r$$
 when $r < \frac{n+1}{1+\left|\frac{a}{b}\right|}$ $(r = 1, 2, 3, \dots, m-1, m)$

i.e.
$$T_2 > T_1$$
, $T_3 > T_2$,, $T_{m+1} > T_n$

i.e.
$$T_2 > T_1$$
, $T_3 > T_2$,, $T_{m+1} > T_m$
(ii) $T_{r+1} < T_r$ when $r > \frac{n+1}{1+\left|\frac{a}{b}\right|}$ $(r = m+1, m+2,n)$

i.e.
$$T_{m+2} < T_{m+1}$$
, $T_{m+3} < T_{m+2}$,, $T_{n+1} < T_{m+1}$

Conclusion:

When $\frac{n+1}{1+\left|\frac{a}{L}\right|}$ is not an integer and its integral part is m, then T_{m+1} will be the numerically greatest

term.

Note: (i) In any binomial expansion, the middle term(s) has greatest binomial coefficient. In the expansion of $(a + b)^n$

Greatest binomial coefficient lf No. of greatest binomial coefficient $^{^{n}C}_{^{n2}}$ and $^{^{n}C}_{^{(n+1)/2}}$ (Values of both these coefficients are equal) Even Odd 2

In order to obtain the term having numerically greatest coefficient, put a = b = 1, and proceed (ii) as discussed above.